
LABRYS FRONTIER SERIES

Systemic
Approach to
Technolo�y (SAT):
The case for society-focused
technolo�y

October

2023

https://doi.org/10.59262/tm58mc

https://doi.org/10.59262/tm58mc

Systemic Approach to
Technolo�y (SAT):

The case for society-focused technolo�y

Labrys

Mariana Cunha e Melo

Jonas de Abreu

© Center for Technolo�y and Public Interest, Sociedad

Limitada

Labrys's mission is to connect technolo�y, business, and

policy to build, inspire, and enable society-focused

technolo�y at scale. Our ultimate goal is to create a world

where technologists can develop society-focused

technolo�y, citizens can effectively debate what society

needs from technolo�y, and regulators can align incentives

to strengthen an open, inclusive, and sustainable economy

for all.

Center for Technolo�y and Public Interest, SL

Carrer de Bailèn, 11, Barcelona, Spain, 08010

www.wearelabrys.com

https://www.wearelabrys.com/

4

 .

 .

 .

 .

 .

 .

 .

 .

 .

Table of contents

Summary

I. Introduction

II. The three pillars of the Systemic Approach to
Technolo�y

II.1. Our approach to technolo�y must be teleologic

II.2. Our approach to technolo�y design must be
systemic

II.3. Our approach to technolo�y development must be
propositive and focused on societies' greatest
challenges

III. Wrapping up

Additional references:

About the authors

5

6

10

10

13

36

41

42

43

5

Summary

This article introduces the Systemic Approach to

Technolo�y (SAT) as a framework for society-focused

technolo�y. The authors argue that technolo�y should be

teleologic, meaning it should be evaluated based on its

application rather than being seen as inherently good or

bad. They emphasize the importance of understanding the

systemic relationships between technolo�y and its context,

advocating for a systemic approach to technolo�y design.

The paper also discusses the need for technolo�y

development to be propositive and focused on addressing

societies' greatest challenges. The authors highlight the

potential of this approach in guiding a new era of

technological development and shaping a positive impact

on society.

6

I. Introduction

W
hen we initially established the Center for

Technolo�y and Public Interest, our objective

was clear: to leverage our knowledge and

diverse backgrounds to find comprehensive solutions to

problems that couldn't be adequately addressed through a

narrow, specialized approach. Over time, we came to

realize that the solutions we had developed throughout our

careers reflected a fundamentally different approach to

technolo�y compared to what we observed elsewhere.

While some aspects of our approach align with what Bruce

Schneier refers to as public interest technologists, there are

numerous other elements that extend beyond that

conceptual label. Now, we take this opportunity to

elaborate on the guiding principles we believe should shape

https://public-interest-tech.com/

7

a new era of technological development, as well as to

outline our aspirations for the future work of CTPI.

We decided to put our approach into words because we

believe it to be crucial that we, as a society, shift our

perspective on technolo�y – how we perceive it, interact

with it, and build it. Many people view specific technologies

as the sole saviors or destroyers of humanity. As if

technolo�y was itself good or bad, capable of kindness or

evil. Industry leaders prioritize what is trendy over what is

urgent. Technologists have become fixated on bringing

decades-old science fiction to life instead of addressing the

pressing needs of humanity today. An astonishing amount

of talent, time, and resources are wasted on narrow

solutions that fail to consider the systemic relationships

between problem elements and the fundamental

components of effective solutions.

Meanwhile, we're at a momentous chapter in the history of

our generation. We are, sociologically speaking, at the turn

of a cycle of our civilization, which is obviously challenging

but is also filled with opportunities for transformation.

In Western culture, we have grown accustomed to viewing

history as a linear process, from genesis to the final

judgment. So, we're hardwired to associate the current

climate of multiple simultaneous crises with the

apocalypse. However, both nature and society experience

time in cyclical patterns, from the passing of days and years

to changes in the seasons and the cultural cycles of our

civilization. From The Turning Point, p. 26:

https://www.google.com/books/edition/_/VHWawK1NJdYC?sa=X&ved=2ahUKEwjOx8Cb9u6BAxWaVaQEHdruBIIQre8FegQILRA8

8

"Western sociologists have confirmed [the
Chinese] ancient intuition [that crisis is an
aspect of transformation]. Studies of periods of
cultural transformation in various societies
have shown that these transformations are
typically preceded by a variety of social
indicators, many of them identical to the
symptoms of our current crisis. They include a
sense of alienation and an increase in mental
illness, violent crime, and social disruption, as
well as an increased interest in religious
cultism—all of which have been observed in
our society during the past decade. In times of
historic cultural change these indicators have
tended to appear one to three decades before
the central transformation, rising in frequency
and intensity as the transformation is
approaching, and falling again after it has
occurred. (...)

Cultural transformations of this kind are
essential steps in the development of
civilizations. The forces underlying this
development are complex, and historians are
far from having a comprehensive theory of
cultural dynamics, but it seems that all
civilizations go through similar cyclical
processes of genesis, growth, breakdown, and
disintegration”.

The world is currently in crisis, and significant

transformations are on the horizon. But this doesn't mean

it's the end of the line. It means the turn of a new cycle.

Acknowledging that we're entering a new cycle means

recognizing the unique opportunity to recognize our

responsibility to use this transformational ener�y to the

benefit of society.

9

It's time for a new approach to technolo�y – one that is

inherently systemic and focused on its application and

intentional purpose.

This document represents our initial attempt to define the

characteristics of our systemic approach to technolo�y.

10

II. The three pillars of the Systemic
Approach to Technolo�y

II.1. Our approach to technolo�y must be teleologic

I
n recent years, public opinion has been bombarded by

the misguided notion that technolo�y is an end in itself

and that specific technologies will lead humanity to

salvation or damnation. That concept has lived in the

popular imagination for ages, but in the last few decades,

humanity has lived short cycles of greater and milder

intensity. Perhaps with greater intensity since the creation

of the atomic bomb, when humanity faced for the first time

the real existential threat at the hands of science and

technolo�y. Lately, we've seen people putting their hopes

or fears into technologies like Artificial Intelligence,

Metaverse, Blockchain, etc.

11

Even within the tech industry, in the past few years,

executives time and again expressed the view that their

technolo�y is inherently good, regardless of its specific use

or application. For example, executives of social media

platforms often argue that social media is inherently good

because it connects people and promotes free speech.

Blockchain enthusiasts believe that blockchain is the

solution to almost any problem, from supply chain

management to voting systems. Similarly, people

immediately bought into the idea that the metaverse would

revolutionize the way we interact with one another and

with technolo�y.

That's what's been called technological solutionism, a term

coined in 2013 by the American writer Evgeny Morozov. To

be fair, we aren't nearly as skeptical as Mr. Morozov. But the

fact of the matter is that technolo�y by itself does not have

the power to do good or bad. It's the use humans employ

and its consequences that can have any kind of moral

charge. This techno-solutionism approach is

counterproductive even for those who employ it. It invites

debate into the ethics of technolo�y itself and the

discussion about whether technolo�y is dangerous or

harmful in itself. It deepens the public debate about

whether specific technolo�y should be banned or further

regulated.

That sort of binary thinking is cultivated in the tech

industry, spreads to public opinion, and bubbles up in

discussions around public policy. One recent example of

that phenomenon can be found in the concerns about

mental health issues related to kids' abuse of social media,

https://www.publicbooks.org/the-folly-of-technological-solutionism-an-interview-with-evgeny-morozov/

12

which gave room to proposals that severely limit freedom of

expression and information online. This case is especially

interesting because it showcases traditional companies

finding ways to push to technolo�y the responsibility for

the toxic environment they inhabit. It is as if the problem

lies solely on how publicly kids propagate impossible

beauty standards while the source of these very standards

and the causes behind women's body shaming safely slide

into the background.

To position specific technologies as saints or demons is to

miss the point. Technolo�y is not in itself good or bad.

Neither hero nor enemy. It can only be defined and

evaluated in the context of its employment by humans. It's

the humans behind the technolo�y and the activity they

exercise that should be under scrutiny, not the technolo�y

itself. George Orwell's book "1984" is a cautionary tale about

state authoritarianism, not camera technolo�y.

The issue of the ethics of a technique is a misplaced debate.

We cannot truly assess the potential impacts of a new

technolo�y, nor can we steer the course of technological

development toward meaningful ends if we are either in

love or terrified of a technique. Technolo�y is not an end in

itself. The application of a piece of technolo�y is important

not only to assess where it stands from an ethical point of

view but also from a technical point of view. Out of the

context of a specific application to a certain end,

technolo�y is pointless. The application context is an

intrinsic part of what a piece of technolo�y is, whether it

works, and whether it is good in an ethical sense. That's

what philosophers call teleologic: the property of

https://www.linkedin.com/posts/famouscampaigns_incredibly-powerful-campaign-from-dove-highlighting-activity-7052317729160073217-_VBA
https://en.wikipedia.org/wiki/Teleology

13

something that can only be understood and valued by

analyzing its purpose.

Technolo�y is neither good nor bad, but the uses humans

employ make it so. It can be either a prison or the door to

infinite space, depending on our dreams, as The Bard

would say (and here we mean Shakespeare, not Google). It's

time to turn our focus back to the human actions we want

to embrace or restrict in this upcoming new cycle of

humanity. It's time we put in proper debate what our

dreams for technolo�y applications are, what they should

be, and how to achieve them.

II.2. Our approach to technolo�y design must be

systemic

a. Systems reasoning

In philosophy, systemic reasoning opposes the mechanistic

thinking that is the front and center of the traditional

scientific method, as articulated by Descartes and furthered

by Newton four hundred years ago. Fritjof Capra describes

this process majestically in the 1982 book The Turning

Point. According to Capra, at the core of that paradigm is

the idea that the cosmos and everything in it works like a

mechanical clock. So, to understand reality and advance

human knowledge, one should break down the complex

whole into smaller parts. The underlying assumption from

this approach is that the whole is the exact sum of its parts,

and the parts are material indivisible unities (literally,

atoms). This cartesian thinking was the basis of the

https://www.goodreads.com/quotes/48958-o-god-i-could-be-bounded-in-a-nutshell-and
https://www.google.com/books/edition/_/VHWawK1NJdYC?sa=X&ved=2ahUKEwjOx8Cb9u6BAxWaVaQEHdruBIIQre8FegQILRA8

14

scientific method that boosted the scientific revolution in

Century XVII.

However, as Capra continues, both science and scientific

thinking have changed dramatically in the last century,

from the evolution of thermodynamics to the foundation of

the theory of relativity, the principle of uncertainty, the

incompleteness theorems, and modern quantum

mechanics. The mechanic clockwork is no longer able to

represent our perception of the cosmos. Neither does

Descartes' cartesian thinking. A new paradigm has emerged

from the confrontation with the inherent complexity of

reality and the acceptance that simplistic models and

unsound deterministic phantasies could not continue to

help us advance human knowledge (for more details, see

The Turning Point, Chapter II).

The new paradigm relies on systemic reasoning,

complexity, and recursive thinking.

Thinkers historically dispute inductive and deductive

reasoning. According to Popper, the difference between

inductive thinking and deductive thinking is that, with

inductive thinking, we generalize the specific instance we

can observe as a general rule while with deductive thinking,

we conceive the specific instances we can observe as

manifestations of an underlying system.

Taking this idea to the next level, in what we can call

recursive thinking, we create models to describe the

underlying system, its relationships, and its potential

elements in a way that the specific observation can be

produced. The correctness of the model is then constantly

https://www.google.com/books/edition/_/VHWawK1NJdYC?sa=X&ved=2ahUKEwjOx8Cb9u6BAxWaVaQEHdruBIIQre8FegQILRA8
https://www.google.com/books/edition/_/VHWawK1NJdYC?sa=X&ved=2ahUKEwjOx8Cb9u6BAxWaVaQEHdruBIIQre8FegQILRA8
https://www.google.es/books/edition/The_Logic_of_Scientific_Discovery/Yq6xeupNStMC?hl=en&gbpv=0

15

tested against new observations, and once an observation is

made that is incompatible with the model, the model is

adapted or replaced by one that could generate the new

observation as well.

The exciting part is that, from this approach, it makes no

sense to say that the model was right and then it was found

to be wrong. Systems are not static entities, so our models

should be in a constant evolution process (On Complexity,

p. 50). The feedback loops between elements of the

systems and their relationships to each other and the whole

put every system in constant change (entropy). So,

recursive thinking must also constantly challenge and

modify our models to the events (phenomena) we observe

(On Complexity, p. 14).

In the systems theory, neither the systems’ elements nor its

whole is the actual object of analysis. The fundamental unit

of a system is the relationships between its elements. That

means one does not need the completeness of the whole to

understand its parts. Nor is it possible to understand the

whole by looking at its parts. It's only by understanding the

relationships between the elements of a system that one

can truly understand a system and predict its behavior

patterns. We do this by working backward from the event

we can observe to their underlying premises. We call this

process investigating the premises of any given event.

A premise is a set of logical assumptions that explain why

something is the way it is. Each event may have multiple

premises, and, in each system, there are a multitude of

events with their own premises. It's the compatibility of all

underlying premises that make up the model of a system.

https://www.google.es/books/edition/On_Complexity/frQkAQAAIAAJ?hl=en&gbpv=0&bsq=Edgar%20Morin,%20On%20Complexity,%202008
https://www.google.es/books/edition/On_Complexity/frQkAQAAIAAJ?hl=en&gbpv=0&bsq=Edgar%20Morin,%20On%20Complexity,%202008

16

The system itself, on the other hand, is the set of elements

and interrelationships that "produce their own pattern of

behavior over time" (Thinking in Systems, p. 2).

But how do we apply this system reasoning to the tech

industry?

Clayton Christensen hinted at this kind of thinking in Seeing

What's Next. The book makes the case for a theory-based

approach to decision-making. It instructs analysts to

understand the inner workings of a market, its elements,

and forces to predict behavior and make sound strategic

decisions. From Seeing What's Next, p. xx-xxi:

"Consider analysts working for a large
investment bank. How do they predict
industry change? Typically, they gather
historical data, determine trends, and make
projections. They extrapolate a firm's past
earnings to determine its future cash flow and
then discount that cash flow at a risk-adjusted
rate to determine firm value. (...) In doing so,
they rely on an implicit theory: The past is a
good predictor of the future.

Now consider management consultants,
seeking to tell a company how to organize its
sales force. Many of them approach this
challenge by identifying a "best-practice"
company and gathering gigabytes of data
"proving" how the company's particular sales
force design is key to its success. If their client
would only imitate that comparison company,
the consultants say, they too would reap the
rewards. Again, the consultants base their
recommendation on an implicit assumption:
Companies find success when they mimic

https://www.google.es/books/edition/Thinking_in_Systems/CpbLAgAAQBAJ?hl=en&gbpv=0
https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0
https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0

17

actions taken by successful or "excellent"
companies.

Sometimes these assumptions are correct and
lead to great insight. But sometimes they don't.
The past is a good predictor of the future
only when conditions in the future
resemble conditions in the past. And what
works for a firm in one context might not work
for another firm in a different context".

The conditions and context Christensen mentions are the

parts and interrelationships between those and the system.

Christensen's Disruptive Innovation Theory, Resources,

Processes, and Values Theory, Value Chaim Evolution

Theory, and Conservation of Integration Theory are

powerful because they work on an incredibly high level of

abstraction, explaining how the very basic elements of a

market behave when exposed to specific forces. It's what

Donella Meadows calls feedback loops, which influence the

flows of stock in a system. Meadows uses far less abstract

language to talk about systems, which is ironic, in a way,

since systems theory allows us to operate in higher degrees

of abstraction. But also makes a first contact with systems

theory far more intuitive for newcomers. From Thinking in

Systems, p. 17, 18, 24, 25:

"A stock is the foundation of any system.

Stocks are the elements of the system that you
can see, feel, count, or measure at any given
time. (...)

Stocks change over time through the actions of
a flow. Flows are filling and draining, births
and deaths, purchases and sales, growth and
decay, deposits and withdrawals, successes

https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0
https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0
https://www.google.es/books/edition/Thinking_in_Systems/CpbLAgAAQBAJ?hl=en&gbpv=0
https://www.google.es/books/edition/Thinking_in_Systems/CpbLAgAAQBAJ?hl=en&gbpv=0
https://www.google.es/books/edition/Thinking_in_Systems/CpbLAgAAQBAJ?hl=en&gbpv=0

18

and failures. A stock, then, is the present
memory of the history of changing flows
within the system. (...)

There is one more important principle about
the role of stocks in systems, a principle that
will lead us directly to the concept of
feedback. The presence of stocks allows
inflows and outflows to be independent of
each other and temporarily out of balance
with each other. (...) When a stock grows by
leaps and bounds or declines swiftly or is held
within a certain range no matter what else is
going on around it, it is likely that there is a
control mechanism at work. In other words, if
you see a behavior that persists over time,
there is likely a mechanism creating that
consistent behavior. That mechanism operates
through a feedback loop. It is the consistent
behavior pattern over a long period of time
that is the first hint of the existence of a
feedback loop. A feedback loop is formed
when changes in a stock affect the flows into or
out of that same stock".

Finally, this kind of thinking is not too dissimilar to what is

called second-order thinking. Typically, second-order

thinkers are looking for different levels of consequences:

direct effects of decisions (first-order) and the direct effects

of those first set of consequences (second-order). What we

describe as the investigation into the premises of any given

event in a system is similar to what we could call finding the

second-order causes of any given phenomenon. That is, it's

the most fundamental logic of what makes a system evolve

or, in Meadows' words, flow.

https://www.techtello.com/second-order-thinking/
https://www.google.es/books/edition/Thinking_in_Systems/CpbLAgAAQBAJ?hl=en&gbpv=0

19

Those are hints of a systemic approach to business.

Developing that approach further is the key to our new

approach to guide how we think, interact, and build

technolo�y. The Systemic Approach to Technolo�y comes

into play throughout the whole product lifecycle. From

conception to the analysis of results and optimization,

systemic thinking can help engineers, product managers,

designers, and executives make more consistent and

reliable decisions. When applied by regulators and other

policymakers, systemic thinking can help them understand

the underlying forces that act in the market and what are

the levers they can pull to influence behavior toward the

common good. Finally, once citizens and society at large

learn to connect the dots and understand the base code of

how technolo�y can be used to affect change, we'll be

better able to discuss what we want from technolo�y and

influence the pace and path of development more

intentionally.

To do this, we must practice seeing all events we witness as

manifestations of an underlying system. That is, to see each

event as the consequence of a series of interactions

between elements in a given system. If, for example, the

competition level in the financial services industry in

country W is low, the systemic approach would require us

to try and understand which elements of that market can

influence the level of competition and how they interact

with each other.

The fundamental question is: what are the premises of this

event? Every time we ask that question, we must contrast

our answers with those we asked before to ensure they are

20

all compatible. This investigation into the premises of an

event can stretch wide when we investigate multiple causes

for the same event or deep when we look into the logical

assumptions for a given premise (the premises' premises).

In doing so, we build a mental model of a system that

could, given the circumstances, lead to the event we are

analyzing (a low competition level in country W). From that

moment on, every new event that presents itself should be

compared against this mental model to assess whether the

version of the system we built in our head could also output

the new event. If yes, great. If not, we must adjust the

mental model of the system so that it can output all the

observed events.

Once the model for the system and its inner workings is

created, it's possible to make an alternative scenario

analysis by changing one or more elements of the system

and trying to predict the changes it might have in the other

elements and in the way they interact with each other. We

can apply this kind of thinking to make reactive predictions

about the potential impact of new legislation that comes

into force or a new product that is brought to market,

looking for what Clayton Christensen calls "signals of

change." The same goes for the analysis of the potential

impact of new technolo�y applications. That being said,

there are two other ways of employing systemic reasoning

in the context of business, public policy, and technolo�y.

The second way is to proactively identify opportunities to

make interventions in a given system. Take the example of

the competition level in country W's financial service

industry. Given the circumstances of country W, it could be

https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0

21

the case that the regulatory burden to start operating any

kind of financial service is too high and that creating a path

for newcomers to start small and grow in complexity as

they grow in relevance in the market could ignite a wave of

transformations in the country W's financial system.

Product teams and executives can also use systems

reasoning to make strategic decisions after modeling the

system of the market in which they operate (for an

insightful quick start, we suggest reading Seeing What's

Next in full).

Finally, the third way of using systems reasoning in this

context is to design a new system from scratch as a means

to make an impact in a broader system. We'll go through

this concept in greater detail in the section about systems-

driven design. But here is where technolo�y design can be

leveraged to pull the broader systems' levers and affect

change. The ultimate example of such an impact is Tim

Berners-Lee's inventions of the World Wide Web, HTML

language, URL system, and HTTP protocol. In short, TimBL

created the primitives and elements that, combined,

enabled every single internet-based innovation ever since.

Here, it's worth making a quick conceptual note about how

systems theory and computer science can relate. When we

discuss different levels of abstraction in a system, we are

operating on the plane of logical relationships. We identify

an event (phenomenon) and work backward through its

premises. As we do this, we work from a greater level of

complexity to a lower level. And, by doing so, we identify

elements and forces that are simpler in nature but more

powerful in terms of what they can create by interacting

https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0

22

with other elements or forces. A good visual example of this

is found in nature, but it's also true for social,

psychological, economic, or any other kind of system. See

the image below from The Turning Point, p. 281:

As we move toward a greater degree of abstraction and

lower level of complexity, the potential for combination

and creation of new things also increases. Now, let's go back

to computer science. In one sentence, what we find is that

abstraction in computer science is the process through

https://www.google.com/books/edition/_/VHWawK1NJdYC?sa=X&ved=2ahUKEwjOx8Cb9u6BAxWaVaQEHdruBIIQre8FegQILRA8

23

which a simpler, more general language is used in a way to

create a more specific language and allow programmers to

ignore how the more general language works (see

Abstraction in Computer Science). The image below

illustrates well how this works. From The Semiotic

Abstraction:

Once the binary language was created, programmers were

able to ignore how the physics of circuits work so that they

could focus on an easier language and create new things.

Yet, binary is still fairly hard to operate, so computer

scientists continued working upward the level of specificity

of languages until they were able to use language that

https://doi.org/10.1007/s11023-007-9061-7
https://doi.org/10.24308/iass-2014-084

24

humans can understand (programming languages),

reducing the difficulty of programming. Still, not all people

learn programming languages. So programmers write even

more specific applications of these languages to create the

programs and interfaces that billions of people can use.

When a person uses their phone to read an article, they are

provoking actions in the circuit of their phones even

without knowing a first thing about how computers work.

We can say the circuitry level of computer science is more

powerful than any program in existence because, in the

end, all programs are the result of a sequence of circuit

operations. So, we can do more things with circuitry than

with any given program. At the same time, although binary

language is harder for us to understand, it is simpler in

nature than a given program because a program

incorporates considerably more details, nuances, and,

therefore, complexity than binary language does. The best

way to visualize this logic is through the concept that binary

language has literally just two elements (1 and 0), and the

Turing Machine describes only six types of fundamental

operations in machine language (primitives) and is able to

describe all computing operations broadly implemented

today. It's harder to operate, but it's simpler, more abstract,

flexible, and powerful than any programming language or

program.

A fun fact may help illustrate the point about the greater

complexity of programming languages compared to

machine languages or binary. Almost everything

programmers write in a programming language will

eventually be thrown away in the process of translating into

25

machine language (a process called compiling, which

literally means to reduce). This happens because

programmers need way more semantics to

understand/change what some code is doing than the

computer does to execute operations. But context doesn't

matter for computers; it only matters to programmers. It's

unnecessary complexity at their level of abstraction.

Now, applying the language from systems theory, we have

that programs are events we can analyze backward from

greater complexity to more powerful elements to find their

premises in different degrees of abstraction and complexity

until the physical operations of the hardware. The same

logic is applicable to all kinds of computing problems. See,

for instance, the OSI Model, which describes the different

levels of abstraction in how the internet works. From OSI

Model:

Technologists routinely choose to operate in different levels

of abstraction depending on how much flexibility they need

to solve a problem: the more flexibility and combinability

they need, the more abstract and less complex the layer

they go to. The same operation can be performed outside

the strictly technical work of a technologist. When building

https://en.wikipedia.org/wiki/OSI_model

26

a solution to any given problem, it's the technologist's job to

understand the premises and most primitive aspects of the

demand at hand. And then to find the simplest way to

model the solution to the problem in a way that can

preserve to the maximum extent possible the flexibility of a

greater abstraction level so that it can solve new demands

from the same system in the future, as they evolve.

For that to happen, we need to take specific demands for

use cases as manifestations of an underlying system and

take a higher degree of abstraction to identify its most basic

elements and learn how they interact with each other. And

then, create a model that could represent the elements and

their interactions to figure out what levers could be used to

bring equilibrium to the system. Finally, it is the

technologists’ job to model the underlying system in a way

that primitives and rules can be used to describe not just

the solution to the demand at hand, but an unknown

number of other demands that can result from the same

system.

b. Technolo�y is contextual, depends on domain
expertise to be useful, and should always be problem-

driven.

Our industry is growing increasingly specialized in pieces of

technolo�y. Software engineers fall in love with

programming languages, architecture models, methods,

and tools and become highly specialized in those

techniques while falling further away from the domain they

are operating in. And for a good reason. Companies expect

their workforce to be specialized, and the technical

27

community is very good at creating silos of practitioners of

this or that technical trend. Courses sell trends as the big

solution to all problems, and millions of technologists

follow along.

So that when engineers go out in the world and start

building things, they look for applications of the tech they

know. They look for the things that they know and that

could be applied to the reality around them. By doing so,

they operate in an extremely reduced level of abstraction

and try to fit the demands they face into the solutions

they've already got. Companies reinforce that behavior by

hiring people who are highly specialized, to the point of

comic absurdity. That is a technolo�y-first approach that

considers what can be done and then looks for what can be

sold from the pool of solutions they already have.

Companies are concerned about what can be done today to

create value for customers and return to stakeholders, as

they should. But that doesn't mean a technolo�y-first

approach is a way forward for all companies in the long

run. And it definitely does not mean that should be the way

we, the society, should deal with technolo�y.

Even in a customer-first approach, those who advocate for a

more well-thought-out product discovery process are

focused on deciding what to build. That focus has the merit

of preventing product teams from trying to solve the

hardest technical problem instead of focusing on the

customers' real needs. The decision of how to build, on the

other hand, is still highly focused on a technolo�y-first

approach that limits beforehand the kinds of solutions that

could be presented. And there's a good reason for that: the

https://twitter.com/tiangolo/status/1281946592459853830?cxt=HHwWjMC8icjoscojAAAA

28

inductive thinking, prevalent today in the industry, makes it

impossible to see and understand the whole.

To illustrate, imagine one product team in a fintech

company is tasked with building a debit card product from

scratch to allow their customers to make payments from

their accounts. They build an integration with the card

network rails and the product is a great success. After a

while, a second team is tasked with building a bill payment

feature. They integrate with a bill payment provider and the

product is a great success. Finally, a third team is tasked

with building an account-to-account transfer feature and it

makes a third integration to a transfer rail.

At the end of this process, there are three teams with three

systems that are able to remove money from the customer's

account and send it through a specific rail. The complexity

can start crippling the teams' ability to move fast and add

new features. The problem-first, systemic approach, on the

other hand, could anticipate that debit cards are only one

specific method of taking money from customers' accounts

for specific purposes. In that case, the first team could have

built an extendable system that, given a set of variables,

could take a certain amount of money from the customer's

account and send it with the appropriate metadata to its

proper destination.

The kind of reasoning that is prevalent in the industry

today is related to a cartesian way of thinking that still views

the world as a machine comprised of smaller pieces that

form a whole. That view, however, is part of an old

paradigm in science that no longer holds true. From On

Complexity (foreword), p. xxvi, xxvii:

https://www.google.es/books/edition/On_Complexity/frQkAQAAIAAJ?hl=en&gbpv=0&bsq=Edgar%20Morin,%20On%20Complexity,%202008

29

"The key elements of the organization of
knowledge in the West go far back in history.
The work of Aristotle and Descartes is central.
Aristotle developed a "logic," providing us with
concepts such as the law of identity and the
excluded middle. (...) Descartes was providing
us with an orientation for the way we think, a
focus on reduction, simplification, and clarity.
[Their contributions] become the foundation
for "good thinking," and [were]
institutionalized in the organization of
universities. There we find the same increasing
specialization in departments, literally the
splitting up into smallest possible parts, and
the creation of strong boundaries based on
three axioms of classical logic (Nicolescu,
2002).

The limitations of this kind of thinking are
becoming increasingly apparent. None of the
sciences offer us a way to integrate all the
tremendous quantities of information and
knowledge generated in the various disciplines
and subdisciplines. This is extremely
problematic for at least two reasons. First,
with increasing specialization, the "big
questions are simply not asked and addressed
anymore. Second, action in the world cannot
be confined to knowledge drawn from one
discipline".

"As I have argued elsewhere (Montuori, 2005a)
drawing on Morin's work, transdisciplinarity
can be summarized as requiring: 1. A focus
that is inquiry-driven rather than discipline-
driven. This in no way involves a rejection of
disciplinary knowledge, but the development

30

of knowledge that is pertinent to the inquiry
for the purposes of action in the world (...)".

We still live in the age of simplification. What philosophers

call "paradigm of simplification" is the combination of the

ideas of disjunction, reduction, and abstraction (On

Complexity, p. 3). By abstraction, we mean that more

concepts are abstracted away (aka ignored) by reducing the

level of abstraction of the concepts people operate on. By

disjunction, we mean the separation of the individual ("I

think, therefore I am") and the object of study (the things I

can think about). This separation gave birth to the

segregation of the three big disciplines of thought: physics

(the "exact" sciences), biolo�y, and the humanities. To

accommodate the complexity of reality into the ever-

increasing specialized disciplines, reductionism took place.

From On Complexity, p. 4, 6:

"Hyper-specialization tore up and fragmented
the complex fabric of reality, and led to the
belief that the fragmentation inflicted on
reality was reality in itself. (...) Blind
intelligence destroys unities and totalities. It
isolates all objects from their environment. It
cannot conceive of the inseparable link
between the observer and the observed. Key
realities are disintegrated. They slip through
the cracks between disciplines. (...) "We are
blind to the problem of complexity. (...) This
blindness is part of our barbarism. It makes us
realize that in the world of ideas, we are still in
an age of barbarism. We are still in the
prehistory of the human mind. Only complex
thought will allow us to civilize our
knowledge".

https://www.google.es/books/edition/On_Complexity/frQkAQAAIAAJ?hl=en&gbpv=0&bsq=Edgar%20Morin,%20On%20Complexity,%202008
https://www.google.es/books/edition/On_Complexity/frQkAQAAIAAJ?hl=en&gbpv=0&bsq=Edgar%20Morin,%20On%20Complexity,%202008

31

That is a real problem for the tech industry. We need

bridges in tech, not walls. By contrast with the hyper-

specialization path, a systemic approach to technolo�y

would be domain-first and problem-driven. Let us explain.

By domain, we mean the context of the application of each

piece of technolo�y. That would mean perceiving domains

of technolo�y application as systems that must be

understood in their elements and their relationships to one

another. And the domains themselves as elements of

greater systems, that interact with each other.

Understanding the domain's lower elements (primitives)

and how they interact with each other and can be

combined allows us to build effective, lasting solutions.

This domain-first, problem-driven approach has similarities

but is not exactly what Eric Evans proposes in the Domain-

Driven Design methodolo�y. From Microsoft's blog:

"Good models exhibit a number of attributes
independent of their implementation. The fact
of the matter is, the mismatch between the
model that's in everyone's head and the model
you're committing to code is the first thing an
aspiring domain modeler should understand.

The software you create is not the true model.
It is only a manifestation—a shadow, if you
will—of the application Form you set out to
achieve. Even though it's an imitation of the
perfect solution, you can seek to bring that
code closer to the true Form over time.

In DDD, this notion is called model-driven
design. Your understanding of the model is

https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design

32

evolved in your code. Domain-driven
designers would rather not bother with reams
of documentation or heavy diagramming tools.
They seek, instead, to imbue their sense of
domain understanding directly into their code.

The idea of the code capturing the model is
core to DDD. By keeping your software focused
on the problem at hand and constrained to
solving that problem, you end up with
software receptive to new insights and
moments of enlightenment. I like what Eric
Evans calls it: crunching knowledge into
models. When you learn something important
about the domain, you'll know right where to
go".

DDD has the virtue of taking a step in the right direction

and refusing the development of technolo�y for

technolo�y's sake. By contrast, it focuses on the problem at

hand and on knowledge beyond the engineering technique.

However, from the conceptualization above, it should be

apparent by now that Evans’ approach has a strong

cartesian logic to it. It suggests domains are boxes of

context that can be statically defined and strictly delimited.

That view, however, does not capture the complexity of the

real world. When Evans say we should crunch knowledge

into models, it misses the most important point: that these

"models" that developers aspire to encode are themselves a

manifestation of an underlying system where its domain

rests. So to write code that is simple but not simplistic, one

must go through the process of building models for the

underlying systems they operate in and, in turn, write code

that best represents such models. Otherwise, engineers will

33

be stuck writing code that represents loose, out-of-context

knowledge they can't truly understand.

The result of this kind of reasoning, though, is that an

unbelievable amount of ultra-specific and un-evolvable

solutions are built and scraped every quarter. Talk about

waste. It is the engineers' job to use code to abstract

inherent complexity, not ignore it. By that, we mean to

create software that can process complexity in a way that

its users can have shortcuts to the endless possibilities the

underlying domain may encompass. But if the software

ignores the complexity, the result is a sterile solution with

no means to integrate to the whole system and is destined

to fail.

The mathematician and philosopher Blaise Pascal is

believed to have fathered the original concept behind the

saying, "If I had more time, I would have written a shorter

letter". The core idea is that it usually takes longer to make

something simpler. The same goes for software. The more

abstract, simple, systemic, domain-first, problem-driven

approach is one that takes more research and involvement

from the engineer. After all, they need to figure out not only

what is known about the problem, but also what are the

underlying assumptions that can be drawn from the

domain.

In the end, the approach of DDD connects to what many

technologists think when they say overengineering should

be avoided at all costs. The problem is that overengineering

is a term that, by definition, means waste and inefficiency.

No one would argue that overengineering software would

be better than employing the right amount of engineering.

34

The issue is defining what that really means. Time and time

again, software engineers end up advocating for ultra-

specific solutions that solve one particular use case and cry

"overengineering" to anyone willing to understand the

underlying needs and context – exactly because it takes

more time and greater expertise. The result is a simplistic

model that escalates complexity at every turn instead of a

model that is simple in essence and can evolve as new

demands appear.

The Systemic Approach to Technolo�y, on the other hand,

considers all forces that influence the behavior of the agents

within a system and their first and second-order effects. It

takes considerations about policy, economy, and a number

of different variables that may be relevant to model a

comprehensive system of needs. For that reason, it's more

abstract by nature and able to explain and sometimes

predict market behaviors better than any other reasoning

framework.

In the next topic, what a systemic, domain-first, problem-

driven approach means in practice is discussed in greater

detail.

c. An introduction to systems-driven design (SDD)

The previous topic discussed how the systems approach

must be introduced in the decision about the scope of

discovery and research into how software engineer teams

should approach problems. The same systemic approach

should also be applied to how to build technolo�y – that is,

how the solution should be designed. That means the

35

solution itself should be composed of elements that can be

combined to solve an indefinite number of problems.

The systems-driven design is an approach to building

technolo�y solutions that involves identifying the primitives

of a system and understanding how they interact with each

other and with the larger system as a whole. By doing so,

we can create flexible and adaptable solutions that can

solve a wide range of related problems within a given

system.

This approach allows for greater flexibility and adaptability

in technolo�y design, as well as a better understanding of

the underlying logic and structure of a given system. It also

encourages a systemic way of thinking about technolo�y

that takes into account the broader context and

implications of a given solution, rather than simply focusing

on the technical details.

Take Pix as an example. Pix is the real-time payments (RTP)

rail built and run by the Brazilian Central Bank (BCB). It's

the fastest-growing RTP rail in the world, settling over one

thousand transactions per second at 99.99 availability rate

(data available at BCB's website). The design of Pix is such

that the rail is able to model any kind of payment solution

known today while leaving room for untapped innovation.

The secret behind this kind of capability is systems-driven

design. While designing Pix, the Brazilian Central Bank took

a drastically different approach from the one prevailing at

the time. It wasn't BCB's first time designing a payment rail.

Brazil has many rails for multiple purposes. One for settling

card transactions, one for payroll transfers, one for paper

https://dadosabertos.bcb.gov.br/dataset/estatisticas-do-spi-sistema-de-pagamentos-instantaneos

36

checks, one for direct debit, another for bill payments, yet

another for utility payments, and so on and so forth. What

all these rails have in common is the fact they were built to

solve one specific problem at a time. The consequence is a

burst of accidental complexity, a spiderweb of

intermediaries, high costs, and inefficiencies all around.

The new approach BCB took, on the other hand, was to

build not a product but a platform upon which institutions

could build any kind of payment solution without the need

to create new integrations. The core concept that enabled

this was the idea that all payment solutions, without

exception, are all about moving money from one account to

another, along with metadata about the payment.

Anything, from credit cards to paying government taxes,

follows this basic setting. Based on that realization, BCB

knew it had to build a settlement chamber (clearing house)

and a communication rail that could effectively connect any

two members of the rail. After that, it only took designing a

messaging protocol between participants that could be

indefinitely extended to create the most flexible payment

rail of all time.

II.3. Our approach to technolo�y development must be

propositive and focused on societies' greatest challenges

We're on the verge of the turn of a cycle, sociologically

speaking. The opportunity to lead what's to be of the next

one is here. So far, what has been getting attention are

visions for the future constringed by decades-old lyrical

dreams of science fiction. Virtual reality, self-driving cars,

and AI as either messiah or exterminator: all conceived in

37

science fiction and brought to life by inspired technologists.

Inspired by Mr. Morozov's clever wording, we can call them

technological poets.

To be fair, there is nothing wrong with art inspiring science

and conforming reality. In fact, there are times when

turning to fiction is the best way of breaking off the

constrictions of what is perceived as a possibility in science.

However, humanity is now at a crossroads and it's time to

press pause in this techno poetry, stop gazing at the stars,

and start navigating toward our goals. We need skilled

navigators willing to sail beyond the horizon line toward

new discoveries. But we need to be clear about where we

want to go and avoid the mistake of letting decades-old

stories and start concentrating on what society needs today.

We must learn to imagine new possibilities without the

lenses of our old myths and intentionally stir the future of

tech towards a society-focused approach.

When we say society-focused, it should be clear by now that

we mean it in a systemic way. So what is good for society is

not the same as what is good for individual consumers at

any given time. It's the systemic harmonic equilibrium of

forces and their first and second-order effects. It takes

considerations about policy, economy, and a number of

different variables that may be relevant to model a system

of needs, as described in the previous topic about the

Systemic Approach to Technolo�y.

At this point, it's important to make something very clear.

Our plea is not that law or regulation should mandate a

society-focused approach. Nor is it a cry for boycotts or to

cancel the techno-poets. It's about what we, as a society,

38

expect from tech from a propositive point of view. From a

standard logic point of view, it might sound like it's the

same thing to go against techno-poetry or support whatever

is the opposite of that. However, from a practical,

rhetorical, and behavioral point of view, to focus the debate

and communications on what we should be doing is way

more effective than calling out the opportunity cost of what

we could do, but doesn't really advance our ultimate goals.

The difference between these two approaches is that while

the latter focuses on confrontation and blockage, the first

puts forward a mindset for action and evolution.

Psychologically speaking, the things we pay the most

attention to are usually the ones that grow the most. What

is true for individuals is also true for societal groups,

especially regarding the stock market. So, while we focus

on the intersection between cool, technically feasible, and

sellable, that's all the tech sector will ever do for us, with

some outliers entering the realm of advancing humanity's

goals in some criteria.

The diagram below illustrates the many areas where

product ideas can find themselves. Each circle of the Venn

Diagram designates an independent property a tech

product may have:

https://hbr.org/2018/03/to-control-your-life-control-what-you-pay-attention-to
https://business.columbia.edu/sites/default/files-efs/pubfiles/3097/Tetlock_Media_Sentiment_JF.pdf

39

One of the best minds in product management today, Marty

Cagan, says product teams must build products that

customers love and that are good for business (the yellow

40

and red circles in the diagram of values above). Both Cagan

and Teresa Torres explicitly address the need for product

teams to test the ethical question of whether certain

products should be built.

That approach works perfectly for a company, but it still

cannot be good enough for society. But we as a society are

not thinking about what should and could be built, and

yet is not currently being thought out. That should be the

job of teachers, journalists, researchers, and every single

person impacted by life in a globalized society. This is to

say, these are our problems. Now, how can technolo�y

help, if at all?

In short, if the approach in business, as Marty Cagan

summarizes, is: "to build something that customers love

and is good for business," as a society, our approach should

be to find and nurture those who can use the Systemic

Approach to Technolo�y to build something that society

needs, customers love, and that is good for business.

As to the product teams inside startups and companies of

all sizes and all industries, to have a society-focused

approach means that society's interest should not be just a

negative criterion, a reason to refrain from doing bad

things, but a positive criterion, a reason to act and build

good things. The society-focused technolo�y, therefore,

puts at the beginning of the product vision exercise the

fundamental question of what society needs. Only then

should we identify, within that scope, what are the

products and services that customers want and companies

can build and profit from.

41

III. Wrapping up

O
ur society-focused approach to technolo�y is

teleologic, systemic, and propositive. We believe

that technolo�y design and policy should be all

about modeling the systems that will enable us, the tech

industry, to better serve society; and that technolo�y

should be built from its primitives up in order to solve

domain-level problems. By shifting our approach to

technolo�y, we can build solutions that are more effective,

more sustainable, and more equitable.

42

Additional references:

Fritjof Capra, The Turning Point, 1983.

Edgar Morin, On Complexity, 2008.

Clayton M. Christensen, Scott D. Anthony, Erik A.

Roth, Seeing What's Next, 2004.

Donella H. Meadows, Thinking in Systems, 2008.

Karl Popper, The Logic of Scientific Discovery, 2002.

https://www.google.com/books/edition/_/VHWawK1NJdYC?sa=X&ved=2ahUKEwjOx8Cb9u6BAxWaVaQEHdruBIIQre8FegQILRA8
https://www.google.es/books/edition/On_Complexity/frQkAQAAIAAJ?hl=en&gbpv=0&bsq=Edgar%20Morin,%20On%20Complexity,%202008
https://www.google.es/books/edition/Seeing_What_s_Next/SZQnfdM9O7wC?hl=en&gbpv=0
https://www.google.es/books/edition/Thinking_in_Systems/CpbLAgAAQBAJ?hl=en&gbpv=0
https://www.google.es/books/edition/The_Logic_of_Scientific_Discovery/Yq6xeupNStMC?hl=en&gbpv=0

43

About the authors

Mariana Cunha e Melo is an experienced lawyer with a

background in strategic litigation, public policy, legal

research, and regulated markets. She has worked with

Supreme Court justices in Brazil, represented Google in

high courts and strategic litigation cases, and built the

internet law team at a top law firm. At Nubank, she helped

structure the Public Policy team and led efforts to work

with the Brazilian Central Bank on designing its Real-Time

Payments rail. She has also worked in early-stage startups

as a strategic projects owner and director of regulation and

strate�y. Mariana is also a writer and speaker on topics such

as privacy, free speech online, and regulation of fintech

companies, with numerous international events under her

belt.

44

About the authors

Jonas de Abreu is an experienced security engineer with a

strong background in software engineering and security. He

worked as an external consultant and instructor in the early

stages of his career. Jonas spent almost a decade at Nubank,

the leading fintech company in LATAM, where he made

significant contributions as the Chief Information Security

Officer and later as a Principal Engineer. He played a crucial

role in shaping Nubank's infosec team and strate�y and

made a notable impact on the Brazilian Central Bank's

decisions regarding the Pix rail. Jonas was responsible for

Nubank's technical proposals during the Pix Forum, which

were highly valued by industry experts and had a pivotal

role in shaping the future of payment systems in Brazil.

	LABRYS FRONTIER SERIES
	Systemic Approach to Technology (SAT):
	The case for society-focused technology

	Systemic Approach to Technology (SAT):
	The case for society-focused technology
	Labrys

	Table of contents

	Summary
	I. Introduction
	II. The three pillars of the Systemic Approach to Technology
	III. Wrapping up
	Additional references:

